Convergence Results for Jungck-type Iterative Processes in Convex Metric Spaces
نویسندگان
چکیده
In this paper, the convergence results of [V. Berinde; A convergence theorem for Mann iteration in the class of Zamfirescu operators, Analele Universitatii de Vest, Timisoara, Seria Matematica-Informatica 45 (1) (2007), 33–41], [V. Berinde; On the convergence of Mann iteration for a class of quasi-contractive operators, Preprint, North University of Baia Mare (2003)] and [V. Berinde; On the Convergence of the Ishikawa Iteration in the Class of Quasi-contractive Operators, Acta Math. Univ. Comenianae 73 (1) (2004), 119–126] are extended from arbitrary Banach space setting to the convex metric space by weakening further the conditions on the parameter sequence {αn} ⊂ [0, 1]. We establish the convergence of Jungck–Mann and Jungck–Ishikawa iterative processes for two nonselfmappings in a convex metric space setting by employing a general contractive condition. Similar results are also deduced for the Mann and Ishikawa iterations. Our results generalize, extend and improve a multitude of results in the literature including those of Berinde mentioned above.
منابع مشابه
On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملIterative Process for an α- Nonexpansive Mapping and a Mapping Satisfying Condition(C) in a Convex Metric Space
We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملConvergence results: A new type iteration scheme for two asymptotically nonexpansive mappings in uniformly convex Banach spaces
In this article, we introduce a new type iterative scheme for approximating common fixed points of two asymptotically nonexpansive mappings is defined, and weak and strong convergence theorem are proved for the new iterative scheme in a uniformly convex Banach space. The results obtained in this article represent an extension as well as refinement of previous known resu...
متن کاملApproximation of endpoints for multi-valued mappings in metric spaces
In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.
متن کامل